

Transport through The cell membrane

Code: CBF-103

Nashwa Aly Abd El-Mottaleb

Professor of Medical Physiology Faculty of Medicine Assiut University

Nashwa Aly Abd El-Mottaleb

Transport through The cell membrane

Learning Objectives:

At the end of the lecture the students should be able to:

- ➤ Describe the importance of active transport as primary active transport; and secondary active transport (co-transport and counter transport) and give examples.
- Define vesicular transport and its types.
- ➤ Basic principles of transport across epithelial membrane

Nashwa Aly Abd El-Mottaleb

II- Active Transport

Characters

- 1. use a protein carrier.
- 2. Occur against the concentration gradient (uphill)
- 3. It requires energy in the form of **ATP**.

Active transport is divided into two types according to the source of the energy used to cause the transport:

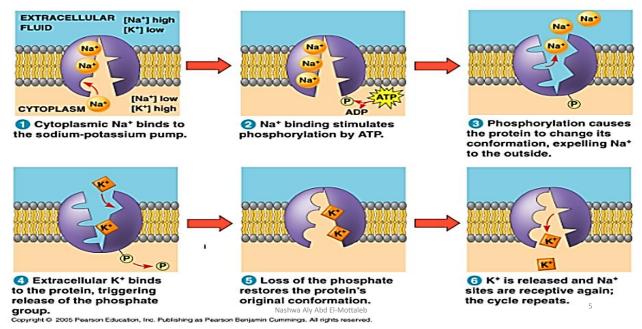
- 1. Primary active transport
- 2. Secondary active transport

Nashwa Aly Abd El-Mottaleb

1- Primary active transport

The the carrier derived the energy directly from ATP.

Examples of primary active transport:

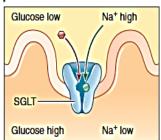

I- Na -K pump:

Characteristics

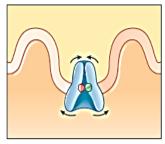
- three receptor sites for binding Na^+
- Two receptor sites for K^+
- Binding sites for ATPase activity (pump) near the sodium.
- Present in all cell membranes.
- **II-The Ca**⁺⁺ **pump** helps in muscle contraction.
- **III-** The H⁺ pump form HCl in the stomach and kidney

Nashwa Aly Abd El-Mottaleb

Mechanism of Na+ - K+ pump:

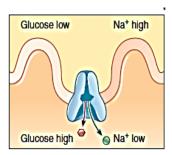


2- Secondary active transport


Characters: The energy required derived *indirectly* from the ion gradient.

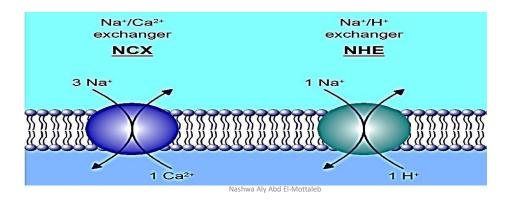
Mechanism

1- Na+ co-transport:

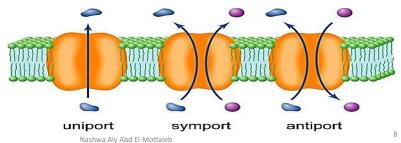


Binding of Na⁺ on luminal side, where Na⁺ concentration is higher, increases affinity of SGLT for glucose. Therefore, glucose also binds to SGLT on luminal side, where glucose concentration is lower.

When both Na⁺ and glucose are bound, SGLT changes shape, opening to cell interior.


Nashwa Aly Abd El-Mottaleb

SGLT releases Na⁺ to cell interior, where Na⁺ concentration is lower. Because affinity of SGLT for glucose decreases on release of Na⁺, SGLT also releases glucose to cell interior, where glucose concentration is higher.


2- Na+ counter-transport:

- 1. Na⁺-Ca⁺⁺ **counter-transport** is very important for the contraction of cardiac muscles.
- 2. Na⁺-H⁺ counter-transport occurs in the kidney.

Carrier types

- **1-Uniporters** are carriers that transport a single particle in one direction, such as the facilitated diffusion of glucose.
- **2- Symporters** transport two particles in the same direction, such as the Na⁺ cotransport of glucose and amino acid.
- **3-Antiporters** transport molecules in opposite direction, such as the Na⁺-Ca⁺⁺ and Na⁺-H⁺ exchangers.

4

Vesicular Transport or Bulk Transport

Large particle as protein hormones and bacteria are transported by *vesicular transport* Endocytosis: transport into the cell.

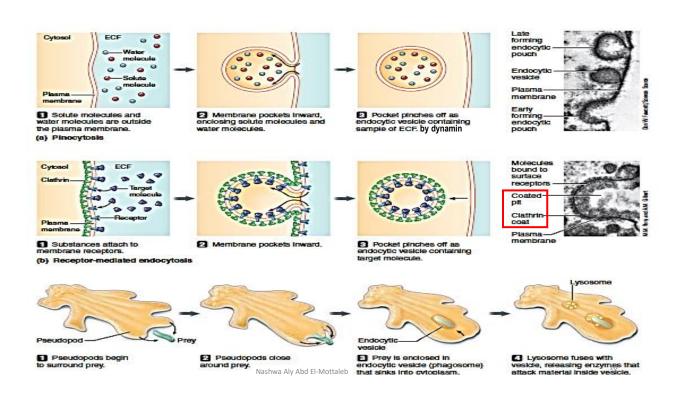
Exocytosis: transport out of the cell.

Endocytosis

I-Pinocytosis:

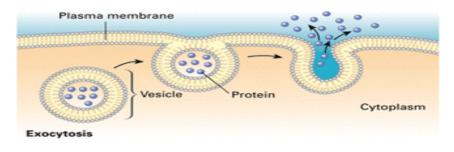
The vesicles traps some of the *extracellular fluid*. The process is also known as "cell drinking".

II- Receptor-mediated endocytosis:


- 1. It is a highly selective process.
- 2. It is triggered by the binding of a specific molecule to a surface membrane receptor specific for that molecule.

III-Phagocytosis

It means engulf of large molecules such as food and bacteria into vesicles and called "cell eating".


Nashwa Aly Abd El-Mottaleb

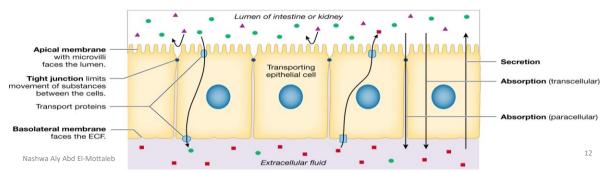
9

Exocytosis

- 1. Almost the reverse of endocytosis occurs. It is an active process (requiring energy and Ca^{++}).
- The membrane of the vesicle fuses with the plasma membrane.
- Then, the area of fusion breaks down, the vesicle opens up and release its contents to extracellular space.

Nashwa Aly Abd El-Mottaleb

11


Transport Across Epithelial membrane


Transcellular Transport: transport through the cytoplasm of the epithelial cells.

Paracellular transport means transport through the spaces between epithelial cells.

It is limited by the junctional complexes that consist of three structures:

- 1- Tight junction (impermeable junction).
- 2- Gap junctions (communicating junction).
- 1. Desmosomes (adhering junction).

References:

- Lippincott' integrated systems book
- Human body in health and diseases
- Elsevier's integrated physiology